Why there are many unmet medical needs in cardiovascular diseases and so few newly approved drugs ?

Bettina Kraus

Nov 21st 2023

Disclosure

Dr. Bettina Kraus

is an employee of Boehringer Ingelheim International and of The University Hospital Würzburg, Germany

This presentation reflects the personal opinion of the presenter but does not reflect the position of her employers.

Introduction

"...in spite of the fact that cardiovascular diseases remain the

number one cause of death and morbidity in EU ... there were

[89 positive EMA's recommendations for the authorisation, including

41 concerning new active substances]... [in...2022...but]

no new cardiovascular drugs recommended for marketing approval"

Meeting Agenda

Questions to consider

- 1. Do we see a mismatch between trends in CV disease burden and drug approvals?
- 2. What are the challenges we face for drug trials in CV diseases?
- **3.** How could the CRT conversation contribute to the development of future CV drugs?

Drug approvals in Europe

Cardiovascular

Adapted from: European Medicines Agency, Annual Report 2022 and 2018; European Medicines Agency, Human Medicines Highlights 2012 - 2022

Drug approvals in the US

- Similarities with Europe

ESC

FDA approvals 1993-2022

FDA approvals by indications

Trend in Cardiovascular Mortality Rates Globally 1990-2019

Percent Change in Age-Standarized CVD Death Rate from 2010-2019

ESC

Roth GA et al; Update from the GBD 2019 Study; JACC 2020 https://doi.org/10.1016/j.jacc.2020.11.010

Source: Institute for Health Metrics and Evaluation (IHME). Used with permission. All rights reserved.

WorldHeartObservatory/trends

Source: Institute for Health Metrics and Evaluation (IHME). Used with permission. All rights reserved.

WorldHeartObservatory/trends

Cardiovascular Disease Burden 2021

DALYs: disability adjusted life years are the sum of years of life lost due to premature mortality and years lived with disability (based on standardized disability weights for each health state)

The Global Burden of CV Diseases and Risk: A Compass for Future Health. Vaduganathan et al; JACC 80(25) 2022:2361-2371; https://doi.org/10.1016/j.jacc.2022.11.005

Source: Institute for Health Metrics and Evaluation (IHME). Used with permission. All rights reserved.

WorldHeartObservatory/trends

Trend in Cardiovascular Disease Burden / 100K

Source: Institute for Health Metrics and Evaluation (IHME). Used with permission. All rights reserved.

WorldHeartObservatory/trends

ESC

What is the burden of CV disease attributed to?

many modifiable cardio-renal-metabolic risk factors among top ten, known to be underdiagnosed/under-treated

TABLE 2 Global Ranking of Attributable Burden of Cardiovascular Diseases Due to Selected Modifiable Risk Factors						
Rank	Cause of Death	Number of Deaths in 2021 (95% UI)	Number of DALYs (95% UI)			
1	High systolic blood pressure	10,800,000 (9,150,000-12,100,000)	209,000,000 (172,000,000-236,000,000)			
2	Dietary risks	6,580,000 (2,270,000-9,520,000)	142,000,000 (45,300,000-200,000,000)			
3	High low-density lipoprotein cholesterol	3,810,000 (2,170,000-5,420,000)	86,300,000 (54,100,000-115,000,000)			
4	Ambient particulate matter pollution	3,130,000 (2,310,000-3,930,000)	62,500,000 (45,700,000-78,400,000)			
5	Smoking	2,370,000 (498,000-4,410,000)	59,600,000 (13,100,000-107,000,000)			
6	High fasting plasma glucose	2,300,000 (2,030,000-2,650,000)	41,200,000 (36,600,000-47,600,000)			
7	High body mass index	1,950,000 (1,120,000-2,910,000)	43,900,000 (23,800,000-65,400,000)			
8	Kidney dysfunction	1,870,000 (1,440,000-2,340,000)	38,200,000 (30,700,000-45,900,000)			
9	Household air pollution from solid fuels	1,610,000 (904,000-2,820,000)	36,200,000 (21,200,000-61,100,000)			
10	Lead exposure	1,570,000 (-139,000-3,170,000)	29,700,000 (-2,780,000-61,200,000)			
11	Low temperature	1,020,000 (915,000-1,100,000)	17,700,000 (15,900,000-19,200,000)			
12	Secondhand smoke	743,000 (297,000-1,070,000)	16,700,000 (6,870,000-24,300,000)			
13	High alcohol use	407,000 (179,000-708,000)	9,260,000 (3,830,000-16,300,000)			
14	Low physical activity	397,000 (122,000-684,000)	7,220,000 (2,870,000-11,500,000)			
15	High temperature	164,000 (114,000-205,000)	3,440,000 (2,370,000-4,300,000)			

The Global Burden of CV Diseases and Risk: A Compass for Future Health. Vaduganathan et al; JACC 80(25) 2022:2361-2371; https://doi.org/10.1016/j.jacc.2022.11.005

>50% of CVD risk attributed to 5 modifiable factors **WESC**

What are the challenges we face with drug trials in CV diseases?

- Trial design: The bar has risen do we need ever larger trials?
- ...
- Trial design: Can novel trial designs bring the ultimate solution?
- ...
- Endpoint definitions: What should we evaluate?
- ...
- Endpoint evaluation: What's the statistical method of choice?
- ...
- Endpoint adjudication: Are CECs always essential?

ESC

Trend in MACE Rates Following first MI

Temporal trends in major cardiovascular events following first-time myocardial

Ravn PB, Eur Heart J Qual Care Clin Outcomes, Volume 9, Issue 3, April 2023, Pages 268–280, https://doi.org/10.1093/ehjqcco/qcac033

Event rates in patients following AMI EPHESUS (2003)

CV death or CV hospitalization

PBO: 993 patients **(30%)** Eplerenone: 885 patients (26.%) with CV death or CV hospitalization PBO: 554 patients **(16.7%)** Eplerenone: 478 patients (14.4%) died

All-cause Mortality

Event rates in patients following AMI PARADISE-MI (2021)

20-Hazard ratio, 0.90 (95% CI, 0.78-1.04) 100-P=0.17 90-15-Ramipril Cumulative Incidence (%) 80-Sacubitril–valsartan 70-10-60-50-40-30-12 6 18 24 30 36 20-10-0 0 12 18 24 30 36 Months since Randomization No. at Risk Ramipril 2831 2577 2318 1725 1091 570 278 Sacubitril-2830 2614 2342 1732 1101 568 280 valsartan Ramipril: 373 patients (13.2%) LCZ696 : 338 patients (11.9%) with CV death or HF event

CV death or HF event

Design Challenge: Event Rates

Declining event rates

Population	Trial	Year	Composite outcome	Participants	Ptps w/ event*	Mortality**
Post compl. MI	EPHESUS	2003	CV death or CVH	6,632	30%	16.7%
post compl. MI	PARADISE-MI	2021	CV death or HFE	5,661	13.2%	8.5% (6.7%†)

Design Challenge: Event Rates

Declining event rates across various endpoints and populations

Population	Trial	Year	Composite outcome	Participants	Ptps w/ event*	Mortality**
Post compl. MI	EPHESUS	2003	CV death or CVH	6,632	30%	16.7%
post compl. MI	PARADISE-MI	2021	CV death or HFE	5,661	13.2%	8.5% (6.7%†)
CVD + T2D	EMPA-REG Outcome	2015	3-MACE	7,020	12.1%	8.3% (5.9%†)
CVD + Obesity	SELECT	2023	3-MACE	17,604	8.0%	5.2% (3.0%†)
,						, <i>,</i> ,
HFrEF (EF<35%)	SOLVD	1991	death or HHF	2,569	57.3%	39.7% (31.1%)
HFrEF (EF<40%)	PARADIGM-HF	2014	CV death or HHF	8,399	26.5%	19.8% (16.5%†)
HL in CHD	4S	1994	Major coronary event	4,444	28%	12% (9%†)
HL in CVD	FOURIER	2017	5-MACE	27,564	11.3%	3.1% (1.7%†)

→ Can novel concepts like adaptive trials / Platform trials / real-world / registry-based trials / use of AI for patient identification provide solutions?

* Comparator/Placebo arm; **all-cause mortality in comparator/Placebo arm; all-cause mortality; † CV death

Design Challenge: Endpoint Evaluation

What and how to assess?

Population	Trial	Year	Composite outcome	Participants	Ptps w/ event*	Mortality**
Post compl. MI	EPHESUS	2003	CV death or CVH	6,632	30%	16.7%
post compl. MI	PARADISE-MI	2021	CV death or HFE	5,661	13.2%	8.5% (6.7%†)
CVD + T2D	EMPA-REG Outcome	2015	3-MACE	7,020	12.1%	8.3% (5.9%†)
CVD + Obesity	SELECT	2023	3-ΜΔCF	17 604	8.0%	5 2% (3 0%†)
everesity	SELECT	2025		17,004	0.070	5.270 (5.6707)
HFrEF (EF<35%)	SOLVD	1991	death or HHF	2,569	57.3%	39.7% (31.1%)
HFrEF (EF<40%)	PARADIGM-HF	2014	CV death or HHF	8,399	26.5%	19.8% (16.5%†)
, , , , , , , , , , , , , , , , , , ,				,		, , , , , , , , , , , , , , , , , , ,
HL in CHD	4S	1994	Major coronary event	4,444	28%	12% (9%†)
HL in CVD	FOURIER	2017	5-MACE	27,564	11.3%	3.1% (1.7%†)

- → Are time-to-first event proportional HRs still the optimal method to evaluate patient benefit? How about hierarchies or total events?
- → Are we assessing relevant endpoints to evaluate patient benefit?

* Comparator/Placebo arm; **all-cause mortality in comparator/Placebo arm; all-cause mortality; † CV death

Design Challenge: Endpoint Adjudication

Is endpoint adjudication required to ensure reliable trial results?

- Number of drugs approved for CV diseases in Europe and US has been stable on a very low level in the past decade
- Despite advances in treatment options over the last decades, the global burden of CV disease is continuously growing
- CV disease burden is driven by modifiable risk factors known to be under-diagnosed and/or under-treated
- Contemporary CV outcomes trials face a number of challenges that require multi-disciplinary approaches

Why there are many unmet medical needs in cardiovascular diseases and so few newly approved drugs ?

Thank you

Bettina Kraus

Nov 21st 2023

